4G Cat1系列产品

XY60产品规格书

4G Cat1模组

版本记录

文档版本	编写人	主审人	批准人	更新日期	说明
V1. 0	Fisher陈	Mark	Alan	2022-06-12	初始版本
V1. 1	朱晓萌	林汉	吴立冬	2022-7-2	增加版本说明

目录

1	产品概述	4
2	性能描述	4
	2.1 功能规格	4
	2.2 性能	5
	2. 3功能	6
3	应用接口	7
	3.1 接口定义	8
	3.2 管脚定义	8
	3.3 工作模式	
	3.4 睡眠模式	
	3.5 串口应用	11
	3.6 USB 应用	
	3.6.1 不支持 USB Suspend 功能	
	3.7 飞行模式	
	3.8 电源、地接口	
	3.9 VDD_EXT电源输出	
	3. 10 控制接口	
	3.11 开机	
	3. 12 关机	
	3. 13 复位	15
	3. 14 模块工作状态指示	15
	3.15 USB_B00T 接口	16
	3.16 SIM卡接口	
	3.17 带卡检测信号SIM卡座	17
	3.18 无卡检测信号SIM2卡座	18
	3.19 SIM设计要求(适用SIM1和SIM2)	18
	3. 20 USB接口	18
	3. 21 UART接口	19
	3.23.1 UART接口定义	19
	3. 22 ADC接口	21
	3. 23天线接口	21
	3.23.1 天线指标	21
	3.23.2 工作频段	22
	3.23.3 天线参考设计	22
	3.24 模拟音频接口	23
	3. 25 可靠性	24

	3. 26 工作温度	24
	3. 27 ESD特性	24
4	电气及射频性能	25
5	尺寸说明	26
6	无铅回流焊工艺参数要求	27
7	包装和运输	28
	7.1 包装尺寸	28
	7.2 防静电要求	28
8	售后服务	28
	8.1 保修期限	

1 产品概述

XY60模块是一款支持多种网络制式的4G Cat1通讯模块,提供FDD-LTE、TDD-LTE等网络数据连接,支持北斗、GPS等定位导航(XY60B、XY60D版本支持),支持WinCE/Linux/Android等嵌入式操作系统。

XY60模块可应用在以下场合:

- 上网本、笔记本
- 远程监控终端
- 安防、消防类终端
- POS机、POC、IPC
- 智能抄表
- 其它

2 性能描述

2.1 功能规格

XY60系列模块产品规格如下表所示:

产品名称	产品描述
	支持FDD-LTE B1/B3/B5/B8
XY60A	支持TDD-LTE B34/B38/B39/B40/B41
	支持LTE主集天线, 支持LTE数据传输
	支持FDD-LTE B1/B3/B5/B8
XY60B(含GPS)	支持TDD-LTE B34/B38/B39/B40/B41
	支持LTE主集天线, 支持LTE数据传输
	支持北斗、GPS、GLONASS、QZSS导航定位
	支持8M ROM
	支持FDD-LTE B1/B3/B5/B8
XY60C	支持TDD-LTE B34/B38/B39/B40/B41
\	支持LTE主集天线,支持LTE数据传输
	支持8M ROM
	支持FDD-LTE B1/B3/B5/B8
XY60D (含GPS)	支持TDD-LTE B34/B38/B39/B40/B41
	支持LTE主集天线,支持LTE数据传输
	支持北斗、GPS、GLONASS、QZSS导航定位
	支持4M ROM

	支持FDD-LTE B1/B3/B5/B8
XY60E	支持TDD-LTE B34/B38/B39/B40/B41
	支持LTE主集天线, 支持LTE数据传输
	支持4M ROM
	支持FDD-LTE B1/B3/B5/B8
XY60F	支持TDD-LTE B34/B38/B39/B40/B41
	支持LTE主集天线,支持LTE数据传输
	支持4M RAM 2M ROM

表1 基本规格

2.2 性能

XY60模块的关键性能指标如下表2所示:

名称	描述	
封装	共提供92个引脚,包括42个LCC管脚和50个LGA管脚	
工作电压	3.4V~4.5V(典型值3.8V)	
功率特性	Class 3 (23dBm±2dB) for LTE-FDD bands	
切竿付性 	Class 3 (23dBm \pm 2dB) for LTE-TDD bands	
	最大支持 Cat 1 FDD 和 TDD	
	支持 1.4/3/5/10/15/20MHz 射频带宽	
LTE特性		
	FDD: 最大上行速率5Mbps,最大下行速率10Mbps	
	TDD: 最大上行速率3Mbps,最大下行速率8.5Mbps	
GPS特性	支持北斗、GPS、GLONASS、QZSS导航定位	
USIM卡接口	支持2路USIM/SIM卡: 1.8V和3.0V	
	支持RTS和CTS 硬流控	
UART 接口	波特率可达到921600bps,默认115200bps	
	可用于AT命令	
网络协议	支持TCP/UDP/FTP/HTTP/NTP/MQTT	
 短消息	Text和PDU模式	
灰相塚	短消息小区广播	
USB 接口	符合USB2.0协议(只能作从设备使用),最高传输速率支持480Mbps;	
	用于软件AT命令、数据传输,抓取LOG	
AT 指令	支持标准AT指令集3GPP TS 27.007, 27.005及扩展AT指令集	
尺寸 17.6mm*15.7mm*1.8mm		
软件升级	USB或者FOTA	
天线接口	支持主天线接口	
 温度	正常工作温度: -25° C ~ +80° C	
шш/Х	扩展工作温度: -40° C ~ +85° C	
	主9 子绿肿此主	

表2 关键性能表

2.3功能

XY60系列模块支持的功能如下:

- 支持2路USIM卡接口
- 支持1路USB 2.0接口
- 支持2路UART接口
- 支持1路SPK输出
- 支持1路MIC输入
- 支持LED状态指示
- 支持关闭射频功能
- 支持外部复位功能
- 支持北斗、GPS、GLONASS、QZSS定位
- 支持1个射频天线接口,1个导航定位天线接口(XY60A&XY60C版本支持)

图1 系统功能图

3 应用接口

如下为XY60系列模组的外观信息描述,模组共有92只脚,包括外圈42个LCC引脚和内圈50个LGA引脚,管脚分配如下图2所示:

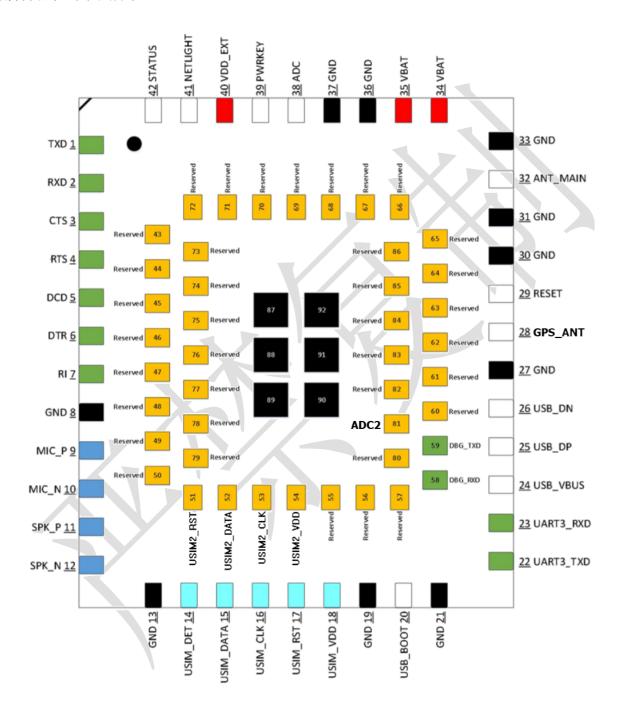


图2 模块引脚图(正面视图)

3.1 接口定义

模组端口状态说明如下表3所示:

类型	描述
DI	数字输入
DO	数字输出
PI	电源输入
P0	电源输出
AI	模拟输入
AO	模拟输出
OD	漏极开路

表3 类型定义

3.2 管脚定义

模组管脚定义及说明如下表4所示:

管脚号	管脚名	I/0	功能描述	DC特性	注释
			电源		
34, 35	VBAT	ΡΙ	模块电源	Vmax=4.5V Vmin=3.4V Vnorm=3.8V	
40	VDD_EXT	PO	输出1.8V	Vnorm=1.8V IOmax=50mA	
8, 13, 19, 21, 27, 30, 31, 33, 36, 37, 87, 88, 89, 90, 91, 92	GND	X	地		
			开关机		
39	PWRKEY	DI	开关机控制输入键: 低电平有效,建议外部通 过电阻下拉到地	VIH: 0.7*VBAT VIL: 0.3*VBAT	
29	RESET	DI	硬件复位控制输入,低电 平脉冲有效。	VIH: 0.7*VBAT VIL: 0.3*VBAT	
			模块状态指示		
42	STATUS	DO	指示模块的运行状态		
41	NETLIGHT	DO	指示模块的网络注册状 态	Vohmin=1.35V Volmax=0.45V	
20	USB_BOOT	DO	下载模式引导控制输入	VoHmin=1.35V VoLmax=0.45V	代码引导控制输入,开机下拉到地,模块将进入USB下载模式;建议放置测试点,方便调试及升级。在正常开机前,不能下拉USB_B00T!

管脚号	管脚名	I/0	功能描述	DC特性	注释
			USB接口		
24	USB_VBUS	PΙ	USB检测	Vmax=5.25V Vmin=3.0V Vnorm=5.0V	
25	USB_DP	10	USB差分数据正	符合 USB 2.0规范	要求 90Ω 差分阻抗
26	USB_DN	10	USB差分数据负	符合 USB 2.0规范	要求 90Ω 差分阻抗
			USIM卡接口		
18	USIM_VDD	PO	USIM1卡供电电压	1.8V USIM: Vmax=1.9V Vmin=1.7V 3.0V USIM: Vmax=3.05V Vmin=2.7V	模块自动识别1.8V 或3.0V USIM 卡
15	USIM_DATA	10	USIM1卡数据	1.8V USIM: 3.0V USIM	
16	USIM_CLK	DO	USIM1卡时钟	1.8V USIM: 3.0V USIM	
17	USIM_RST	DO	USIM1卡复位	1.8V USIM: 3.0V USIM	
14	USIM_DET	DI	USIM1卡检测	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V	
54	USIM2_VDD	PO	USIM2卡供电电压	1.8V USIM: Vmax=1.9V Vmin=1.7V 3.0V USIM: Vmax=3.05V Vmin=2.7V	模块自动识别1.8V 或3.0V USIM 卡
52	USIM2_DAT A	10	USIM2卡数据	1.8V USIM: 3.0V USIM	
53	USIM2_CLK	DO	USIM2卡时钟	1.8V USIM: 3.0V USIM	
51	USIM2_RST	DO	USIM2卡复位	1.8V USIM: 3.0V USIM	
			主串口		
7	RI	DO	模块输出振铃提示	Volmax=0.45V Vohmin=1.35V	1.8V 电源域
5	DCD	DO	模块输出载波检测	Volmax=0.45V Vohmin=1.35V	1.8V 电源域
6	DTR	DI	DTE准备就绪,睡眠模式控制	Volmax=0.45V Vohmin=1.35V	1.8V 电源域
4	RTS	DI	DTE请求发送数据	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V	1.8V 电源域

管脚号	管脚名	I/0	功能描述	DC特性	注释
3	CTS	DO	模块清除发送	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V	1.8V 电源域。
1	TXD	DO	模块发送数据	Volmax=0.45V Vohmin=1.35V	1.8V 电源域
2	RXD	DI	模块接收数据	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V	1.8V 电源域
			串口3		
22	UART3_TXD	DO	模块发送数据	Volmax=0.45V Vohmin=1.35V	1.8V 电源域
23	UART3_RXD	DI	模块接收数据	Vnmin=-0.3V Vnmax=0.6V Vnmin=1.2V Vnmax=2.0V	1.8V 电源域
			调试串口		
59	DBG_TXD	DO	模块发送数据	Volmax=0.45V Vohmin=1.35V	1.8V 电源域
58	DBG_RXD	DI	模块接收数据	VILMIN=-0.3V VILMAX=0.6V VIHMIN=1.2V VIHMAX=2.0V	1.8V 电源域
			ADC接口		
38	ADC		数模转换	电压范围 : 0V~1.4V	不用则悬空
81	B/C版本: ADC2 A版本: RESERVED		数模转换	电压范围 : 0V [~] 1.4V	不用则悬空
			音频接口		
12	SPK_N	AO	差分音频输出通道 (-)		可驱动32 Ω 喇 叭,功率37mW。若 输出功率无法满足
11	SPK_P	AO	差分音频输出通道(+)		需求,可用此接口 驱动外部功放器 件。不用则悬空。
10	MIC_N	ΑI	差分音频输入通道(-)		
9	MIC_P	ΑI	差分音频输入通道(+)		
			射频接口		
32	ANT_MAIN	ΑI	4G天线接口	50Ω 特性阻抗	
28	GPS_ANT A/C版本	AI	GPS天线接口	50Ω 特性阻抗	

管脚号	管脚名	I/0	功能描述	DC特性	注释
			保留管脚		
43-50、55- 57、60-86	RESERVED		保留		保持悬空

表4 管脚说明

3.3 工作模式

模组的工作模式分为如下几种:工作模式、Idle模式、睡眠模式。

模式	功能					
正常工作模式	Idle	模块注册上网络,模块可以够接收和发送数据				
	Talk/Data	模块通话和接收和发送数据				
飞行模式		AT+CFUN=4命令可以将模块设置成飞行模式。				
睡眠模式	此模式了	此模式下,模块的功耗将会降到非常低,但模块仍然可以接收寻呼、短信、电话				

表5 工作模式说明

3.4 睡眠模式

在睡眠模式下,XY60模组可将功耗降低到最低水平,主控可通过UART指令、USB指令等多种模式操作,让模组进入睡眠模式。

3.5 串口应用

XY60提供三路串口,主通讯串口UART,一路普通串口,一路打印log串口DBG_UATR,模块是DCE (Data Communication Equipment)设备。当用户使用全功能串口时,可以参考下图连接方式:

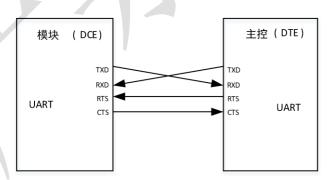


图3 UART 通信/控制示意图

使用2线串口时,RTS和CTS脚可悬空。

如遇到模组的电平和外设的电平不一致时,可采用下图展示的三极管电平转换电路,虚线部分的电路可以参考实线TXD和RXD的电路,需要注意信号的方向。

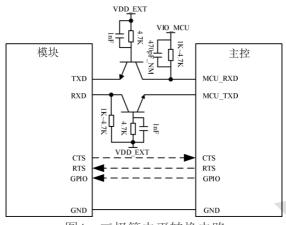
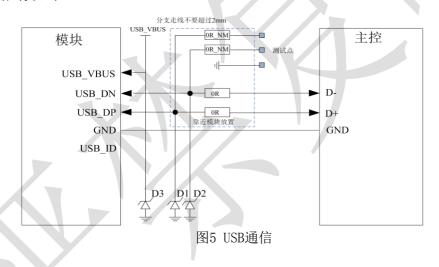



图4: 三极管电平转换电路

3.6 USB 应用

XY60拥有一路USB2.0接口,不支持USB充电功能,不支持USB HOST模式。

USB是主要的调试口和软件升级接口,建议客户在设计时预留USB测试点,如果接到了主控芯片,设计时需要预留0R电阻用于切换外部测试点,可以作为USB从设备,支持USB休眠及唤醒机制,连接电路图推荐如下:

3.6.1 不支持 USB Suspend 功能

如果主机不支持 USB Suspend 功能,可以通过外部控制电路断开 USB_VBUS 的方式使模块进入睡眠模式,或者主控MCU通过调用AT指令控制XY60进入睡眠模式。

备注:

- 1. USB数据线必须严格按 $90\,\Omega$ +/-10%差分形式走线,数据线上的TVS器件D1和D2必须选用等效电容值小于1pF的 TVS器件靠近USB连接器或者测试点放置:
 - 2. USB2. 0 速率的检测确定,由 USB 协议自动完成,客户不需要外部上拉DP,否则可能会影响设备USB枚举。

3.7 飞行模式

当模块进入飞行模式时,射频功能不可使用,而且所有与射频相关的 AT 命令不可访问。软件进入飞行模式,可以通过发送 AT+CFUN=<fun>命令来设置。<fun>参数可以见AT手册。

3.8 电源、地接口

管脚号	描述
34、35	VBAT信号脚: 电源的输入端,电源的范围为3.4V~4.5V,典型值为3.8V。
40	VDD_EXT信号脚: 模组对外的电源输出, 默认的电源输出电压为1.8V
8, 13, 19, 21, 27, 30, 31, 33, 36, 37 , 87, 88, 89, 90, 91, 92	GND脚: 模组的接地脚

表7 电源脚说明

XY60系列模块使用VBAT供电。在大功率模式下,模组的瞬间峰值电流最大可能达到2.0A。为防止电压跌落到3.3V以下,使用开关电源或LD0时需要能够提供足够电流,建议在模块供电端口处加一个容值大于470uF的钽电容或电解电容。若使用开关电源给模块供电,开关电源的功率器件、电源走线应尽量避开天线部分,以防止EMI干扰。考虑到射频PA性能,推荐客户使用的VBAT电源为3.8V典型值。VBAT电源部分的电路可参照如下图6所示:

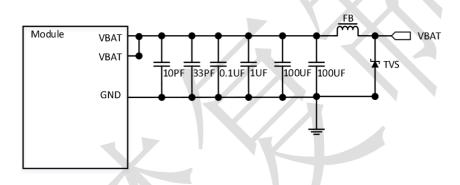


图6 电源部分参考设计

3.9 VDD_EXT电源输出

XY60模块通过VDD_EXT输出1.8V电压供模块外部数字电路使用,该电压为模块的逻辑电平电压,可用于外部小电流(<80mA)电路应用,不用保持悬浮状态。VDD_EXT的逻辑电平定义如下表

参数	最小值	典型值	最大值	单位
VDD_EXT	1.71	1.8	1.89	V

表9 输出电源

3.10 控制接口

控制信号用于对模块进行开/关机,复位和飞行模式控制

引脚名	I/0	引脚号	描述
RESET	DI	29	模块在工作时,拉低RESET2.5s以上,模块复位
PWRKEY	DI	39	关机状态下,拉低PWRKEY50ms以上,模块开机;

表10 控制引脚

3.11 开机

用户通过拉低PWRKEY引脚使模块开机。此引脚已在模块内部上拉到VBAT。推荐客户在设计时,模块引脚处增加TVS管可以有效的增强模块的抗静电能力,推荐电路如下图7所示:

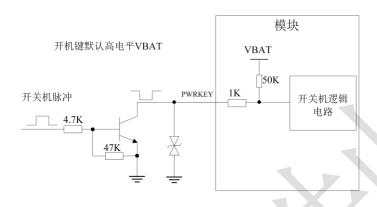
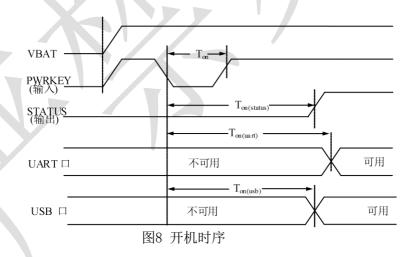
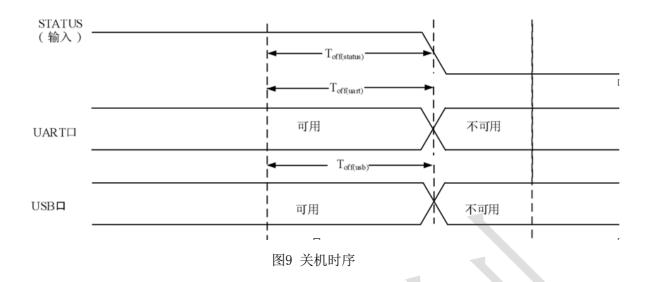



图7 开机参考电路


备注: 如客户不需要上电自动开机,请不要在 PWRKEY 和 RESET 上并联超过 100NF 电容,否则上电检测到 低电平会导致模块自动开机。外部也无需通过下拉电阻到地。

因 PWRKEY 和 RESET 都有拉低开机功能,禁止开机流程中短时间内先后拉 PWRKEY 和 RESET,否则有可能导致开机异常。开机时序如下图8所示:

3.12 关机

模块可以使用RESET拉低关机功能(此时PWRKEY不能接地);模块也可以使用"AT+CPOF"命令关机,也可以通过上述同样的接口电路关机,关机时序如下图9所示:

3.13 复位

可以通过拉低模块的RESET引脚来重启模块(此时需要将PWRKEY一直拉低)。RESET引脚也有拉低开机功能,但是推荐使用PWRKEY开机,将RESET作为复位功能使用。在模块内部已经有50KΩ上拉电阻,所以外部无需再加上拉电阻,推荐电路如下图10所示:

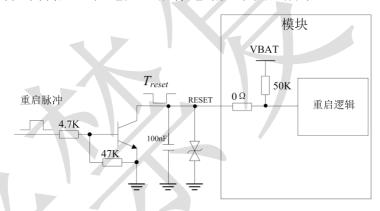


图10 按钮复位参考电路

注意: 建议仅在紧急情况,比如模块无响应时,使用 RESET 引脚。RESET 复位时间推荐3s。

3.14 模块工作状态指示

XY60提供两个状态指示信号接口,详细描述如下表:

引脚名	I/0	引脚号	描述
STATUS	DO	42	模块状态指示(指示灯) 高电平: 开机 低电平: 关机
NETLIGHT	DO	41	网络注册状态指示(指示灯) 网络已注册: 200mS闪烁 网络未注 册: 低电平

表11 状态指示灯

下图11为的STATUS 参考电路设计

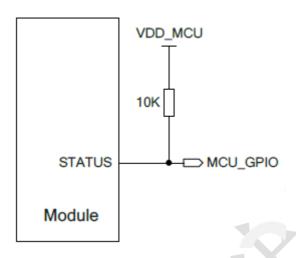


图11 STATUS 参考电路

3.15 USB_BOOT 接口

XY60 USB_B00T 功能。开发者可以在模块开机前将USB_B00T 上拉至VDD_EXT,再开机时模块将进入强制下载模式。在此模式下,模块可通过USB 接口进行软件升级

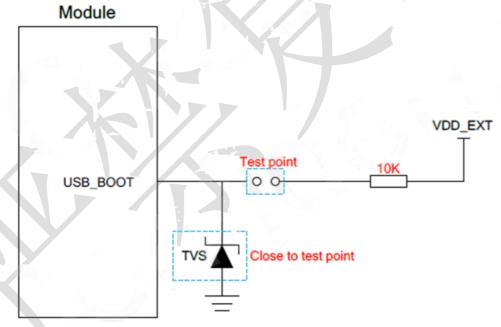


图12 USB_BOOT 参考电路

3.16 SIM卡接口

XY60模块内置2路(U)SIM卡接口,支持1.8V和3.0VSIM卡,说明如下表12所示:

名称	I/0	引脚号	描述
USIM_CLK	DO	16	SIM时钟信号
USIM_DATA	10	15	SIM数据信号
USIM_RESET	DO	17	SIM复位信号
USIM_VDD	PO	18	SIM电源
USIM_DET	DI	14	SIM热插拔检测
USIM2_RESET	DO	51	SIM2复位信号
USIM2_DATA	10	52	SIM2数据信号
USIM2_CLK	DO	53	SIM2时钟信号
USIM2_VDD	PO	54_	SIM2电源

表12 SIM卡接口说明

3.17 带卡检测信号SIM卡座

SIM设计需要选用SIM卡座,模组本身也可以支持带有SIM卡检测功能的热插拔卡座。使用时请注意对应的检测管脚接法。如下图13所示:

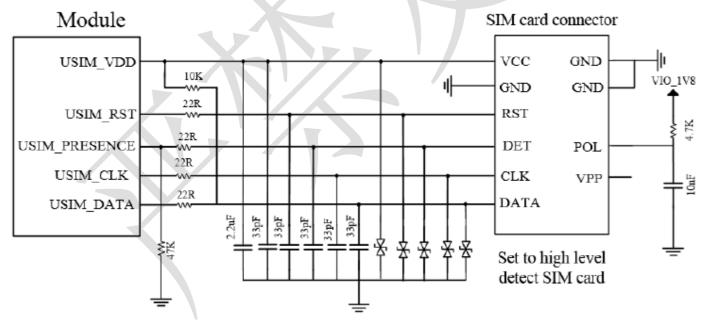


图 13 带卡检测卡座参考电路设计

3.18 无卡检测信号SIM2卡座

SIM2卡的使用参考电路如下图14所示。

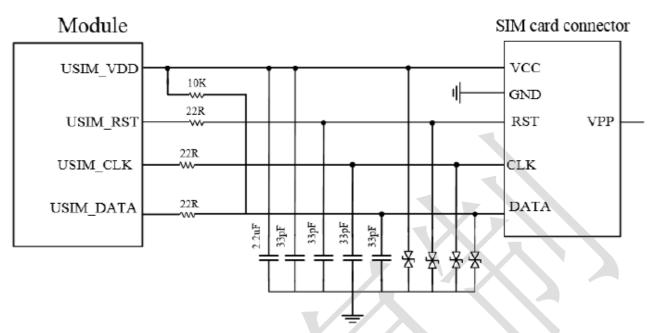


图 14 不带卡检测卡座参考电路设计

3.19 SIM设计要求(适用SIM1和SIM2)

SIM卡电路设计需要满足EMC标准及ESD要求,同时需要提高抗干扰能力,确保SIM卡能够稳定的工作。在设计中需要严格遵守以下几点:

- ▶ SIM卡座布局尽量靠近模块,远离RF天线、DCDC电源、时钟信号线等强干扰源;
- > 采用带金属屏蔽外壳的SIM卡座,从而提高抗干扰能力;
- ▶ 模块到SIM卡座的走线长度不得超过100mm,过长的走线会降低信号质量;
- ➤ SIM_CLK和USIM_DATA信号包地隔离,避免相互干扰。如难以做到,则至少需要将(U)SIM信号 作为一组包地保护;
- ➤ SIM卡信号线的滤波电容和ESD器件靠近(U)SIM卡座放置,ESD器件等效电容请选择22~33pF电容;
- ➤ USIM DATA需上拉10K电阻到USIM VDD。

3.20 USB接口

式。

XY60模块支持USB2.0,兼容USB High-Speed(480Mbits/s)和USB Full-Speed(12Mbits/s)两种模

名称	I/0	引脚号	描述
USB_DP	10	25	USB 差分数据+
USB_DN	10	26	USB 差分数据-
USB_VBUS	PI	24	USB插拔检测

表13 USB接口说明

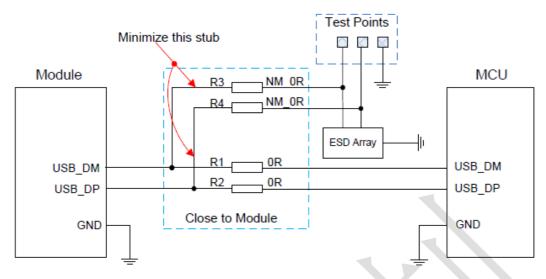


图15. USB电路

为了满足USB数据线信号完整性要求,R1、R2、R3、R4必须靠近模块放置,并且这些电阻需要彼此靠近放置。测试分支走线必须尽可能短。 在符合USB2.0标准USB接口电路设计中,需要遵循以下几点:

- ▶ USB差分走线需控制为90ohm差分特性阻抗。
- ▶ USB信号差分走线不要走在晶振、振荡器、磁性器件以及RF信号下方;远离干扰源和易受干扰信号,走线走内层,并进行包地处理。
- ▶ 如果模块USB接口与USB插座连接,需要在靠近USB插座位置放置ESD防护器件,并且ESD 防护器件结电容要求小于2pF。
- ▶ 为了避免噪声耦合到USB数据线上,请保持USB数据走线尽可能短。如果可能,USB数 据线上建议增加0欧姆电阻。

3.21 UART接口

3.23.1 UART接口定义

XY60模块有两个串口: 主串口和调试串口。主串口支持00bps, 1200bps, 4800bps, 9600bps, 14400bps, 19200bps, 28800bps, 38400bps, 57600bps, 115200bps, 128000bps, 230400bps, 460800bps, 921600bps波特率,默认波特率为115200bps, 用于数据传输和AT命令传送。

名称	I/0	引脚号	描述
RI	DO	7	模块输出振铃提示
DCD	DO	5	模块输出载波检测
CTS	DO	3	清除发送
RTS	DI	4	请求发送
DTR	DI	6	准备就绪
TXD	DO	1	模块发送数据
RXD	DI	2	模块接收数据

表14 主UART信号脚说明

名称	I/0	引脚号	描述	备注
DBG_TXD	DO	58	模块发送数据	1 0V由口品
DBG_RXD	DI	59	模块接收数据	1.8V电压域

表15 调试UART信号脚说明

模块支持1路带硬件流控功能串口(不支持DTR和RI信号)。

如果MCU端采用3.3V的端口电源域,在此情况下情况下需要电平匹配电路。参考设计如下图16所示。图中的虚线部分可以参考实线电路,需要注意连接方向。模块输入虚线部分参考模块输入实线电路,模块输出虚线部分参考模块输出实线电路。

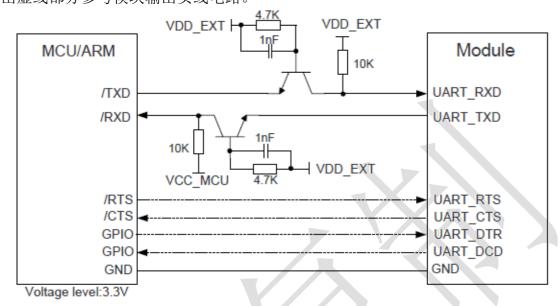


图16 UART外围设计

此外,也可使用单独的电平转换IC来实现1.8V←∞=>3.3V的电平转换,如下图17所示:

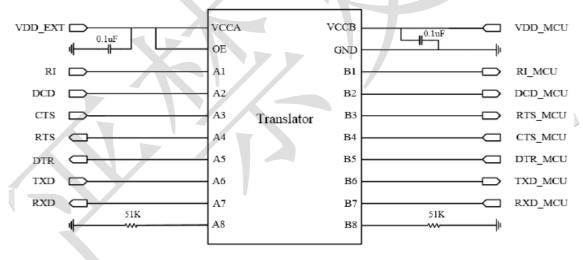


图17 UART外围设计

3.22 ADC接口

XY60模块提供2路模数转换接口。使用AT+TADC指令可读取ADC接口的电压值,ADC电压范围为0~1.4V,请注意外部分压。

名称	I/0	引脚号	描述
ADC	DI	38	模数转换器接口
ADC2	DI	81	模数转换器接口 (备注: B/C版本: ADC2 A版本: RESERVED)

表16 ADC信号脚说明

3.23天线接口

XY60模组的天线接口如下表17所示:

名称	I/0	引脚号	描述
ANT_MAIN	ΑI	32	4G天线
GPS_ANT	ΑI	28	GPS天线; B版本才支持

表17 天线信号脚说明

3.23.1 天线指标

■ 天线效率

天线效率是天线输入功率与辐射功率的比。由于天线的回波损耗,材料损耗,耦合损耗,辐射功率总比输入功率低,推荐>40%(-4dB)。

■ S11 or VSWR

S11表明了天线的50欧姆阻抗的匹配程度,一定程度上影响天线效率。可以用VSWR测试手段去衡量这个指标。推荐S11<-10dB。

■ 极化

极化是天线在辐射最大方向上电场的旋转方向。推荐使用线极化。

■ 辐射方向图

辐射方向图是指天线在远场各个方向上电磁场的强度。半波振子天线是最合适终端的天线。如果是内置天线,推荐使用PIFA天线或者IFA天线。

天线面积: 高6mm*宽10mm*长100mm。

天线辐射方向: Omni_directional(全向性)。

■ 增益和方向性

天线的方向性是指电磁波在各个方向上的电磁场强度。增益是天线效益与天线方向性的集合。推荐的天线增益≤2.5dBi。

■ 干扰

除了天线性能以外,PCB板上的其它干扰也会影响到模块的性能。为了保证模块的高性能,必须对干扰做好控制。建议:比如LCD、CP、FPC走线,音频电路,电源部分要尽可能远离天线,并做相应隔离和屏蔽,或者路径上作滤波处理。

3.23.2 工作频段

0.10.1 工作 次次							
3GPP频段	发送	接收	单位				
B1	1920~1980	2110~2170	MHz				
В3	1710~1785	$1805 \sim 1880$	MHz				
В5	824~849	869~894	MHz				
В8	880~915	$925 \sim 960$	MHz				
B34	2010~2025	2010~2025	MHz				
B38	2570~2620	$2570 \sim 2620$	MHz				
B39	1880~1920	1880~1920	MHz				
B40	2300~2400	2300~2400	MHz				
B41	$2555 \sim 2655$	$2555 \sim 2655$	MHz				

表18 频段信息

3.23.3 天线参考设计

天线是一个敏感器件,容易受到外部环境的影响。例如天线位置,占用空间大小以及周围的接地等情况均可能影响天线性能。此外,连接天线的射频电缆,固定天线的位置也会影响天线性能。XY60模块的两路天线采用焊盘引出的方式,推荐客户使用天线连接器,并使用与之匹配的RF转接线。模组到天线端预留IT型网络,具体数值根据实际情况调试。

天线接口到天线之间需按照 $50\,\Omega$ 阻抗走线,其中GPS天线VDD-EXT是作为有源天线设计提供的电源(1.8V),做低功耗设计时,需对该路电源做相应控制,无源天线时这一路不需要,亦可做兼容设计。

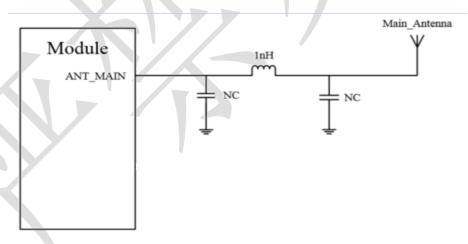


图18-1 4G 天线原理图设计

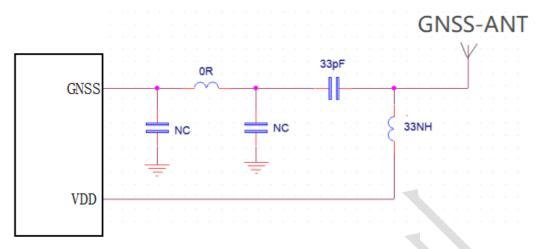


图18-2 GNSS天线原理图设计(B&D版本采用)

3.24 模拟音频接口

XY60支持一路MIC输入和一路SPK输出,对应的管脚如下表19所示:

音频接口					
12	SPK_N	АО	差分音频输出通道 (-)	可驱动32 Ω 喇叭,功率37 mW。若输出功 率无法满足需	
11	SPK_P	AO	差分音频输出通道 (+)	求,可用此接口 驱动外部功放器 件。不用则悬 空。	
10	MIC_N	AI	差分音频输入通道 (-)		
9	MIC_P	AI	差分音频输入通道 (+)		

表19 模拟音频接口

音频输入通道用于麦克风输入,麦克风通常选用驻极体麦克风,音频输出通道用于听筒或者扬声器(需外置音频功放)输出,音频输出通道支持输出语音及铃声等功能。

听筒及免提的麦克风建议采用内置射频滤波双电容(如10 pF 和33 pF)的驻极体麦克风,从干扰源头滤除射频干扰,会很大程度改善耦合TDD 噪音。33 pF 电容用于滤除模块工作在900 MHz 频率时的高频干扰。如果不加该电容,在通话时候有可能会听到TDD 噪声。同时10 pF 的电容是用以滤除在1800 MHz 频率运行时的高频干扰。需要注意的是,由于电容的谐振点在很大程度上取决于电容的材料以及制造工艺,因此选择电容时,需要咨询电容的供应商,选择具有最合适的容值的电容来滤除在EGSM900/DCS1800 运行时的高频噪声。GSM 发射时的高频干扰严重程度通常主要取决于客户应用设计。在有些情况下,EGSM900 的TDD噪声比较严重,而有些情况下,DCS1800 的TDD 噪声比较严重。因此客户可以根据测试的结果选贴需要的滤波电容。PCB 板上的射频滤波电容摆放位置要尽量靠近音频器件或音频接口,走线尽量短,要先经过滤波电容再到其他点。天线的位置离音频元件和音频走线

尽量远,减少辐射干扰,电源走线和音频走线不能平行,电源线尽量远离音频线。差分音频走线必须 遵循差分信号的布线规则。模拟音频接口参考电路如下图19所示:

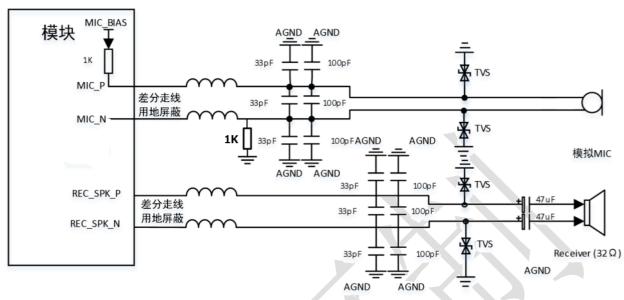


图19 模拟音频参考电路

3.25 可靠性

极限电压范围指模块电源电压以及数字和模拟输入/输出接口能够承受的极限电压范围。

参数	描述	最小值	典型值	最大值	单位
VBAT	供电	-0.3	3.8	4. 5	V
GPI0	数字I0电平电压	-0.3	1.8	2	V

表20 电气特性

3.26 工作温度

参数	最小	典型	最大值	单位
正常工作温度	-25	+25	+80	° C
扩展工作温度	-30	+25	+85	° C

表21 温度特性

3.27 ESD特性

XY60模块设计时已经考虑了ESD的问题,并做了ESD防护,但是考虑在运输和二次开发也可能有 ESD问题发生,所以开发者要考虑最终产品ESD问题的防护,除了必须考虑包装的防静电处理之外,客 户应用时请参考文档中的接口设计的推荐电路。

位置	空气放电	接触放电
VBAT, GND	±8KV	±4KV
天线接口	±8KV	±4KV
其他接口	±1KV	±0.5KV

表22 静电特性

4 电气及射频性能

模组的4G发射功率如下表所示:

工作频率	最大功率值	最小功率值
LTE FDD B1/B3/B5/B8	$23 \mathrm{dBm} \pm 2 \mathrm{dB}$	<-39dBm
LTE TDD B38/B39/B40/B41	$23 \mathrm{dBm} \pm 2 \mathrm{dB}$	<-39dBm

表23 TX性能

模组的4G接收灵敏度如下表所示:

工作频率	主级天线
LTE FDD B1	-97dBm
LTE FDD B3	-97dBm
LTE FDD B5	−97dBm
LTE FDD B8	-97dBm
LTE TDD B34	-97dBm
LTE TDD B38	-97dBm
LTE TDD B39	-97dBm
LTE TDD B40	-97dBm
LTE TDD B41	-97dBm

表24 RX性能

模组的GPS性能如下表25(B/D版本支持)所示:

参数	性能描述		
接收方式	64 跟踪信道		
按 収刀式	GPS L1 C/A, QZSS L1C/A, GLONASS L1OF, Beidou		
移动更新率	1Hz (Up to 5Hz)		
水平定位精度	<2.0m (CEP50)		
速度精度	<0.1m/s		
1	冷启动	28s	
首次定位时间	热启动	2s	
	辅助启动	2s	
	跟踪	-165dBm	
 灵敏度	重新获取	-157dBm	
/ 火	冷启动	-148dBm	
	热启动	-155dBm	

表25 GPS性能参数

5 尺寸说明

XY60模组的外观图如下所示,请在使用中注意模组的散热考虑,推荐主控板上(模组对应正下方)不要走线,保证完整的地。下图为XY60模组的外观信息描述,整体尺寸为17.6mm*15.7mm*1.8mm。模组共有92只脚,外观尺寸如下图20、21所示。

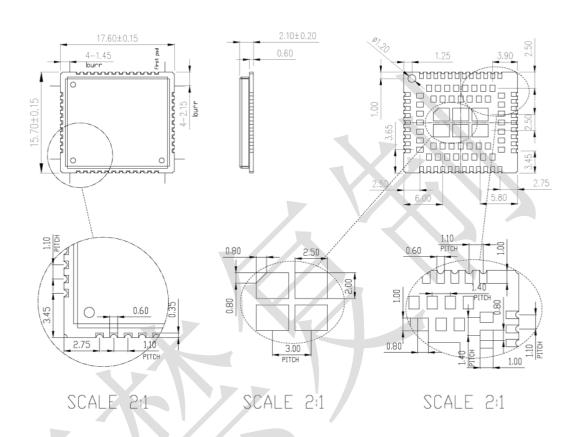


图20 模组正、侧面尺寸

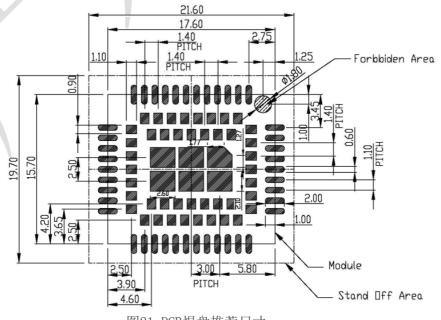


图21 PCB焊盘推荐尺寸

6 无铅回流焊工艺参数要求

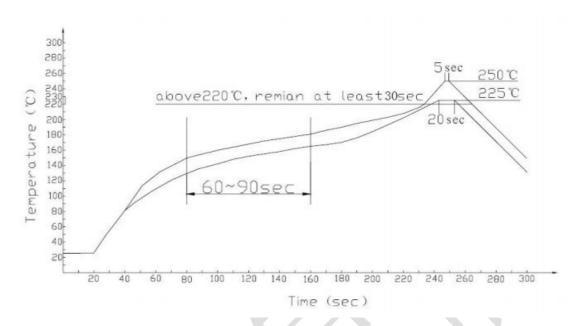


图22 回流焊曲线图

无铅回流焊接工艺曲线如图22所示。无铅回流焊工艺参数如表26所示。

区域	时间	升温速率	峰值温度	降温速率
预热区(40~150℃)	60~150s	€2.0°C/s	-	-
均温区(150~200℃)	60~120s	<1.0℃/s	/-	-
回流区(>217℃)	60~90s	/-	230−260℃	-
冷却区 (Tmax~180℃)	- /	-	-	1.0°C/s≤Slope≤4.0°C/s

表26 回流焊参数

说明:

- 预热区:温度由40° \sim 150°C,温度上升速率控制在2° \sim 150°C,温度上升速率控制在2° \sim 150°C,温度上升速率控制在2° \sim 150°C,
- 均温区:温度由150℃~200℃,稳定缓慢升温,温度上升速率小于1℃/s,且该区域时间控制在60~120s(注意:该区域一定缓慢受热,否则易导致焊接不良)。
- 回流区:温度由217℃~Tmax~217℃,整个区间时间控制在60~90s。
- 冷却区:温度由 $Tmax\sim180$ °C,温度下降速率最大不能超过4°C/s。
- 温度从室温25℃升温到250℃时间不应该超过6分钟。
- 该回流焊曲线仅为推荐值,客户端需根据实际生产情况做相应调整。
- 回流时间以60~90s为目标,对于一些热容较大无法满足时间要求的单板可将回流时间放宽至120s。

封装体耐温标准参考IPC/JEDEC J-STD-020D标准, 封装体测温方法参考JEP 140标准。 IPC/JEDEC J-STD-020D 标准, 封装体测温方法按照 JEP 140 标准要求。IPC/JEDEC 20D 中的无铅器件封装体耐温标准如下表27所示。

Package Thickness	Volume mm3 <350	Volume mm3 350~2000	Volume mm3 >2000
<1.6mm	260℃	260℃	260℃
1.6mm∼2.5mm	260℃	250℃	245℃
>2.5mm	250℃	245℃	245℃

表27 无铅器件封装体耐温标准

JEP140 推荐:对于厚度较小的器件,测量封装体温度时,直接将热电偶贴放在器件表面,对于厚度较大的器件,在器件表面钻孔埋入热电偶进行测量。由于量化器件厚度的要求,推荐全部采用在封装体表面钻孔埋入热电偶的方式(特别薄器件,无法钻孔除外)。

7 包装和运输

7.1 包装尺寸

模组使用卷盘或托盘装。

7.2 防静电要求

模组为静电敏感产品。模组上的射频电路包含静电敏感器件,焊接、安装和运输过程中请注意静电防护,请不要用裸手直接碰触RF_IN及其他引脚,否则可能会导致模组损坏。

ESD CAUTION

8 售后服务

8.1 保修期限

产品自发货日起12个月内,在用户遵守说明书规定要求的情况下,若有质量问题,我公司负责提供售后服务。