GPS系列产品

XY30产品规格书

RTK GPS模块

版本记录

文档版本	编写人	主审人	批准人	更新日期	说明
V1.0 朱晓萌		林汉	吴立冬	2022-07-17	初始版本

目录

1	概述	
	1.1 产品支持功能	3
	1.2 产品应用场景	
2	产品架构框图	4
	模块尺寸	
4	模块引脚定义	_
5	技术规格	5
	5.1 推荐工作条件	
	5. 2 性能指标	6
	5.4 模组参照电路	7
	5. 5 注意事项	7
6	无铅回流焊工艺参数要求	8
	包装和运输	
	7.1 包装尺寸	

8.1 保修服务.......9

1 概述

XY30是一款高性能 BDS/GNSS 单频 RTK 导航模块。产品采用中科微电子的第四代低功耗 GNSS SOC单芯片AT6558,支持多种卫星导航系统,包括中国的北斗二号和北斗三号全部卫星,美国的 GPS,俄罗斯的GLONASS,日本的 QZSS,可以同时接收以上卫星导航系统的卫星信号,并且实现联合定位、导航与授时。产品具有高灵敏度、低功耗、低成本等优势。模块支持 RTK 定位模式,基站数据支持RTCM3.2 协议输入。模块内集成干扰抑制单元,提高在复杂电磁环境中的稳定性。模块内集成FLASH,支持自主代码升级和参数灵活配置。模块内置天线检测及天线短路保护功能。

1.1 产品支持功能

- 支持北斗二号和北斗三号 1~63 号全部卫星
- 支持 BDS/GPS/QZSS 卫星导航系统的单系统定位,以及任意组合的多系统联合定位。
- 支持 A-GNSS
- 支持 RTCM3.2 协议
- 冷启动捕获灵敏度: -148dBm
- 跟踪灵敏度: -162dBm
- 标准定位精度: 2.5m
- RTK 定位精度: 2cm+1PPM
- RTK 收敛时间: <60s
- 首次定位时间: <32s
- 低功耗: 连续运行〈45mA@3.3V
- 内置天线检测及天线短路保护功能支持Mid-amble
- 电源电压输入范围: 3.0V~3.6V, 典型值3.3V。
- 工作温度: -40℃ ~ +85℃

1.2 产品应用场景

- 导航类终端产品
- 高精度类定位终端
- 手表、手环类可穿戴设备
- 网络摄像头
- 烟感、气感、报警器等安防终端产品
- 电力终端产品
- 行业终端
- 车载定位产品

2 产品架构框图

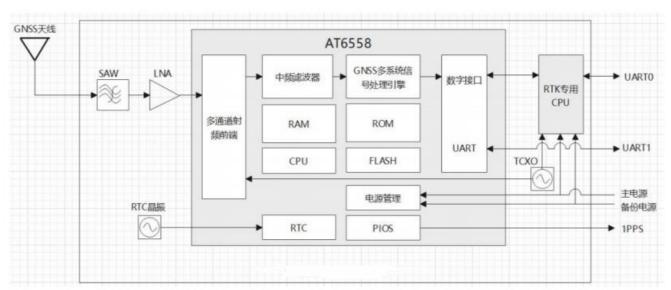


图1 产品架构图

3 模块尺寸

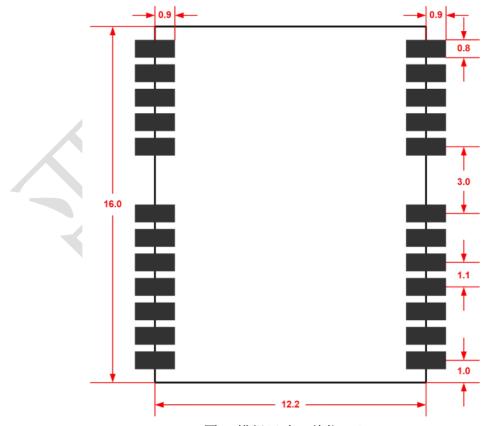


图 2 模组尺寸 (单位 mm)

4 模块引脚定义

Pin No.	Pin Name	Туре	Description	
			•	
1	NC	-	-	
2	Reserved	-	-	
3	1PPS	О	秒脉冲输出	
4	Reserved	-	-	
5, 6, 7	NC	-		
8	nRST	I	模块复位输入,低电平有效,不用时外部最好上来	
9	VCC_RF	О	电源输出,可给天线供电 3.3V	
10, 12, 13	GND	P	Ground	
11	RF_IN	I	天线信号输入	
14、15	NC	-		
16	TXD1	О	辅助串口数据输出	
17	RXD1	I	辅助串口数据输入	
18、19	Reserved	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
20	TXD0	О	串口数据输出	
21	RXD0	I	串口数据输入	
22	VBAT	I	RTC及SRAM后备电源 1.5~3.6V	
23	VCC	I	模块电源:2.7~3.6V	
24	GND	P	Ground	

表 1 管脚定义

5 技术规格

5.1 推荐工作条件

Parameter	Min	Тур	Max	Unit
Operation Voltage	3. 0	3. 3	3. 6	V
Operation Temperature	-40		85	$^{\circ}\!$

表 2 工作温度

5.2 性能指标

测试项	测试结果		
信号接收	BDS/GPS/QZSS		
冷启动TTFF	≤32s		
热启动TTFF	≤1s		
重捕获TTFF	≤1s		
RTK收敛时间	<60s		
冷启动捕获灵敏度	-148dBm		
热启动捕获灵敏度	-156dBm		
重捕获灵敏度	-160dBm		
跟踪灵敏度	-162-dBm		
定位精度	SPS:<2.5mm; RTK 2cm		
测速精度	<0.1m/s		
定位更新率	1Hz		
串口特性	4800~115200bps		
协议	NMEA0183		
后备电池	1.5~3.6V		
电源供电	2.7~3.6V		
典型功耗	45mA		
尺寸	16*12.2*2.4mm		
工作温度	-40~85℃		
存储温度	-40~85℃		

表 3 性能参数

5.3 设计建议

为达到高性能,推荐使用有源天线工作模式。为达到高精度定位的效果请使用满足性能要求的高精度天线。方案应用信息:

- 有源天线直接连接 RF_IN。
- 模块内部 RF_IN 已通过电感和 VCC_RF 相连进行供电。
- 模块内部提供天线检测及短路保护功能。
- 为了保证模块处于最佳工作状态,建议有源天线增益范围 15~30dB。

5.4 模组参照电路

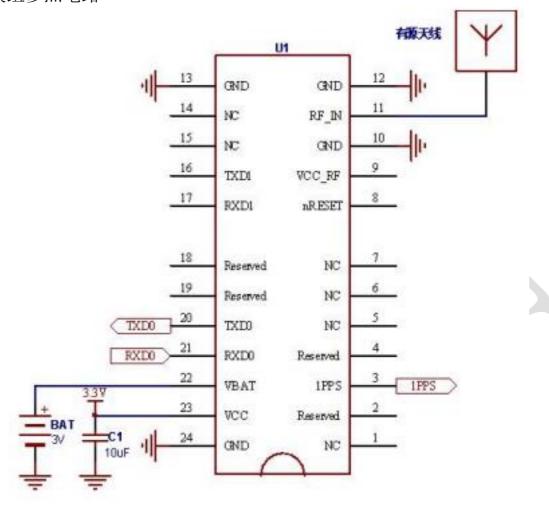


图3 模组使用的参考电路

5.5 注意事项

为了保证 XY30 的最佳性能,用户在使用本模块时需要注意以下几点:

- 采用低纹波的 LDO, 电源纹波控制在 50mVpp 以内。
- 模块附近尽量避免频率高、幅度大的数字信号,在 layout 时要特别注意接地良好。
- 天线接口尽量靠近模块的 RF 输入引脚,并注意 50 欧姆的阻抗匹配。
- 模块本身具有有源天线接入、断开、短路检测电路。在天线意外短路时,对天线的供电进行限流(50mA),起到保护的作用。在上述 3 种天线端口状态发生变化时,可以从串口输出相应的信息。信息如下:
 - ➤ 天线短路状态: \$GPTXT, 01, 01, 01, ANTENNA SHORT*63
 - ➤ 天线断开状态: \$GPTXT, 01, 01, 01, ANTENNA OPEN*25
 - ➤ 天线正常状态: \$GPTXT, 01, 01, 01, ANTENNA OK*35
- 模块使用无源天线时,串口输出语句均为开路。
 - ▶ 信息如下: \$GPTXT, 01,01,01,ANTENNA OPEN*25

6 无铅回流焊工艺参数要求

模组的SMT建议使用无铅回流焊工艺,对应的炉温曲线如下图所示:

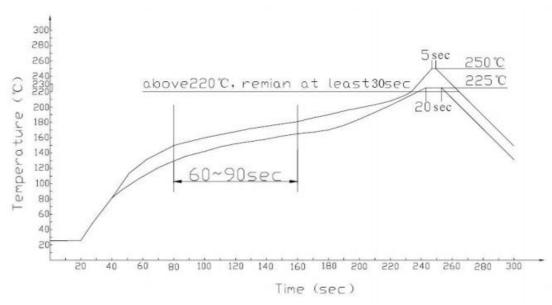


图4 炉温曲线

无铅回流焊工艺温度参数区间划分如下表所示:

区域	时间	升温速率	峰值温度	降温速率
预热区(40~150℃)	60~150s	≤2.0°C/s	-	_
均温区(150~200℃)	60~120s	<1.0℃/s	/-	-
回流区(>217℃)	60~90s	/-	230−260℃	-
冷却区 (Tmax~180℃)	-/	-	_	1.0°C/s≤Slope≤4.0°C/s

表4 温度参数

补充说明:

- 预热区:温度由40℃~150℃,温度上升速率控制在2℃/s左右,该温区时间控制 在60~150s。
- 均温区:温度由150℃~200℃,稳定缓慢升温,温度上升速率小于1℃/s,且该区域时间控制在60~120s(注意:该区域一定缓慢受热,否则易导致焊接不良)。
- 回流区: 温度由217℃~Tmax~217℃,整个区间时间控制在60~90s。
- 冷却区:温度由Tmax~180℃,温度下降速率最大不能超过4℃/s。
- 温度从室温25℃升温到250℃时间不应该超过6分钟。
- 该回流焊曲线仅为推荐值,客户端需根据实际生产情况做相应调整。
- 回流时间以60~90s为目标,对于一些热容较大无法满足时间要求的单板 可将回流时间放宽至120s。

封装体耐温标准参考IPC/JEDEC J-STD-020D标准, 封装体测温方法参考JEP 140标准。IPC/JEDEC J-STD-020D 标准, 封装体测温方法按照 JEP 140 标准要求。

JEP140 推荐:对于厚度较小的器件,测量封装体温度时,直接将热电偶贴放在器件表面,对于厚度较大的器件,在器件表面钻孔埋入热电偶进行测量。由于量化器件厚度的要求,推荐全部采用在封装体表面钻孔埋入热电偶的方式(特别薄器件,无法钻孔除外)。

7 包装和运输

7.1 包装尺寸

模组使用托盘包装。

图5 包装介绍

7.2 防静电要求

模组为静电敏感产品。模组上的射频电路包含静电敏感器件,焊接、安装和运输过程中请注意静电防护,请不要用裸手直接碰触RF_IN及其他引脚,否则可能会导致模组损坏。

8 售后服务

8.1 保修服务

产品自发货日起12个月内,在用户遵守说明书规定要求的情况下,若有质量问题,我公司负责提供售后服务。