NB-IOT系列产品

XY26产品规格书

版本记录

文档版本	编写人	主审人	批准人	更新日期	说明
V1. 0	朱晓萌	林汉	吴立冬	2022-10-28	初始版本

目录

1	概述	
2	产品封装	4
3	模块尺寸	4
4	模块引脚定义	5
5	技术规格	6
	5.1 推荐工作条件	6
	5.2 工作模式	6
	5.3 电源供电	7
	5.4 开关机电路	7
	5.5 复位电路	7
	5.6 PSM指标	8
	5.7 串口	9
	5.8 SIM卡接口	10
6	无铅回流焊工艺参数要求	11
7	包装和运输	12
	7.1 包装尺寸	12
	7.2 防静电要求	12
8	售后服务	12
	8.1 保修服务	12

1 概述

XY26是一款高集成度、低功耗的NB-IoT无线通信模组,协议上完全兼容R13、R14。产品支持三大运营商的全频段网络: Band3、Band5、Band8。

XY26是44pin的LCC封装贴片式模组,产品尺寸为: 15.8×17.7×2.2mm, 能最大限度地满足终端设备对小尺寸模组产品的需求,通过焊盘内嵌于各类终端产品中。模组提供了丰富的硬件接口,内部集成多种通信协议栈,支持中国移动 OneNET 、中国电信 IoT 、联通雁飞格物DMP物联网云平台等。为客户的应用提供极大的便利,能够满足物联网应用需求,包括燃气表、水表、烟感、气感、路灯、井盖、消防栓、农业和环境监测等

XY26采用了超省电技术,电流功耗在省电模式(PSM)下功耗低于1uA。核心性能指标如下表1所示:

特性	说明				
供电	VBAT 供电电压范围: 2.2V ~ 4.2V				
供电	典型供电电压: 3.3V				
省电	PSM 下最大电流: 1uA				
发射功率	$23 ext{dBm} \pm 2 ext{dB}$				
灵敏度	< −129 dBm				
温度范围	正常温度范围: -40℃~+85℃				
USIM 卡接口	支持 1.8/3.0V USIM 卡				
	主串口:				
	全功能串口				
	用于AT指令发送,数据传输				
串口	自适应波特率: 从4800bps到115200bps 调试串口: 仅用于软件调试和下载				
	辅助串口:用于模组软件调试及底层日志获取				
物理特性	15. 8mm*17. 7mm*2. 2mm				
固件升级	UART/FOTA				
数·拉 / t- t- c	NB1: 上行62.5 Kbps (12 Tone) 下行25.5 Kbps				
数据传输	可升级到NB2: 上行 157 Kbps (12 Tone) 下行 102 Kpbs				
天线接口特征阻抗	50 欧姆				
	TX: 190 mA@23 dBm@15 KHz@ST				
功耗	DRX 2.56s: 0.30 mA, eDRX40.96s: 0.1 mA				
7.1.2	STANDRY 24511A				
	DEEPSLEEP: 1uA				
	보고 구선 다 1년 2 1년 2년 1년				

表1 产品核心性能参数

2 产品封装

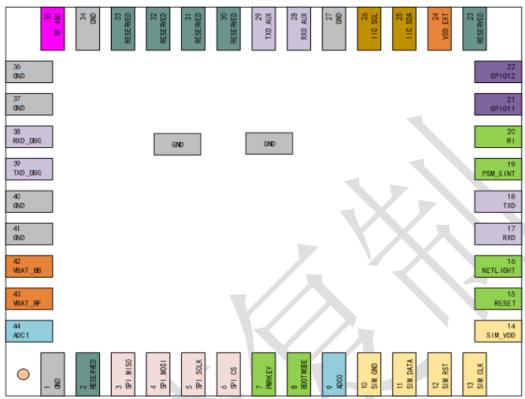


图1 产品封装

3 模块尺寸

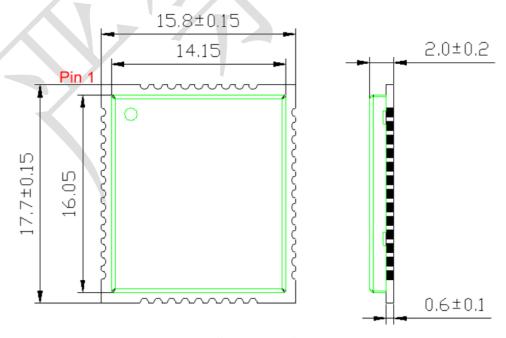


图 2 模组尺寸 (单位 mm)

4 模块引脚定义

引脚序号	引脚名称	I/0	引脚描述	备注
1	GND	G	地线	
2	NC		保留引脚	不用必须悬空
3	SPI_MISO	Ι	主机输入从机输出信号	
4	SPI_MOSI	0	主机输出从机输入信号	
5	SPI_SCLK	0	串行时钟信号	
6	SPI_CS	0	片选信号	
7	PWRKEY	DI	开关机控制信号	预留
8	BOOTMODE	I/0	强制下载接口	(XXX)
9	ADCO	Ι	模数转换接口	电压采集范围: 0V~1V
10	SIM_GND	G	USIM卡专用地线	
11	SIM-DATA	0	SIM卡数据线	
12	SIM-RST	0	SIM卡复位线	SIM 卡接口建议 使用 TVS 管进行 ESD 防护,布线不 超
13	SIM-CLK	0	SIM卡时钟线	过 2cm
14	SIM-VDD	P	SIM卡供电电源	使用1.8V/3.0V SIM
15	RESET	I	模组/系统复位	
16	NETLIGHT	0	网络状态指示	
17	RXD	I	模组调试/下载串口数据输入	
18	TXD	0	模组调试/下载串口数据输出	
19	PSM_EINT	Ι	外部中断引脚; 从 PSM 唤醒模组块。	
20	RI	0	Ring信号输出管脚	
21	GPIO_11	I/0	通用10口	
22	GPI0_12	I/0	通用10口	
23	RESERVED		保留引脚	不用必须悬空
24	VDD_EXT	Р	VDD3. 0V电源输出	最大80MA@3.0V
25	I2C_SDA	DO	串行线时钟信号	不用必须悬空
26	I2C_SCL	DO	串行线数据信号	不用必须悬空
27	GND	G	地线	
28	RXD_AUX	I	模组辅助串口数据输入	

29	TXD_AUX	0	模组辅助串口数据输出	
30	RESERVED		保留引脚	不用必须悬空
31	RESERVED		保留引脚	不用必须悬空
32	RESERVED		保留引脚	不用必须悬空
33	RESERVED		保留引脚	不用必须悬空
34	GND	G	地线	
35	RF_ANT	Ι	NB-IoT射频天线接口	50 欧姆特性阻抗
36	GND	G	地	
37	GND	G	地	
38	RXD_DBG	I/0	调试串口数据输入	X
39	TXD_DBG	I/0	调试串口数据输出	
40	GND	G	地	
41	GND	G	地	
42	VBAT_BB	Р	主电源供电	电压输入范围2.2V-4.2V 典型电压: 3.3V
43	VBAT_RF	Р	主电源供电	X王·四正, 0.01
44	ADC1	AI	模数转换	预留

表 2 管脚定义

5 技术规格

5.1 推荐工作条件

Parameter	Min	Тур	Max	Unit
Operation Voltage	2. 2	3. 3	4. 2	V
Operation Temperature	-40		85	$^{\circ}$

表 3 工作温度

5.2 工作模式

模式	功能
Active	模组处于活动状态; 所有功能正常可用, 可以进行数据发送和接收; 模组 在此模式下可切换到 Idle 模式或 PSM 模式。
Idle	模组处于浅睡眠状态,网络保持连接状态,可接收寻呼消息;模组在此模式下可切换至 Active 模式或者 PSM 模式。
PSM	模组只有 RTC 工作,处于网络非连接状态,不再接收寻呼消息; 模组可 通过 AT命令唤醒或者定时器超时后唤醒

5.3 电源供电

引脚	引脚号	描述	最小	典型	最大	单位
VBAT	42, 43	模组供电电源	2. 2	3.3	4. 2	V
GND	1, 10, 27, 34, 36, 37, 40, 41	模组地				

表4 电源参数

电源的设计对模组的性能影响至关重要。为了确保更好的电源供电性能,在靠近模组 VBAT 输入端,建议并联一个低 ESR (ESR=0.7 Ω) 的 100uF 钽电容,以及 100uF,10uF 。 10uF,10uF 。 10uF · 10uF ·

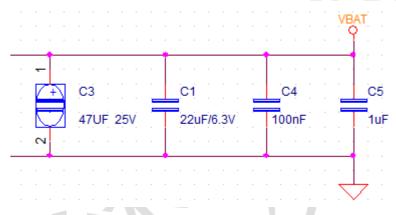


图2 电源参考电路

5.4 开关机电路

XY26模组默认上电开机设计,用户通过控制电源VBAT引脚的电压来实现模组开关机控制。如用户需要通过MCU控制模组的开关机,模组内部的器件需要做调整,实现高电平开机,低电平关机。

引脚名	引脚号	描述
PWRKEY	7	模组开关机控制引脚

表5 开关机电路

5.5 复位电路

引脚名	引脚号	描述
RESET	15	模组复位信号输入引脚,低电平有效,持续时间大于6s的低电平脉冲控制模组进入复位流程

表6 复位电路

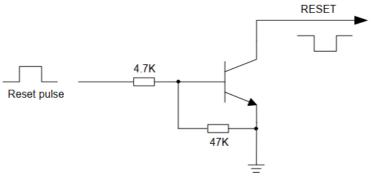


图3 三极管复位电路

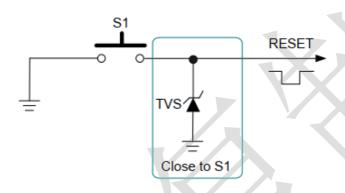
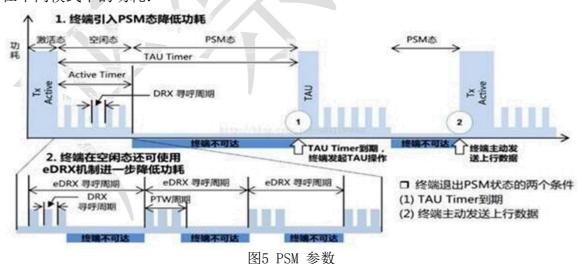



图4 按键控制复位设计

5.6 PSM指标

模组在PSM下的最低耗流为1uA。PSM主要目的是降低模组功耗,延长电池的供电时间。下图5展示了XY26在不同模式下的功耗:

模组进入 PSM 的过程如下:模组在与网络端建立连接或跟踪区更新(TAU)时,会在请求消息中申请进入 PSM,网络端在应答消息中配置 T3324 定时器数值返给模组,并启动可达定时器。当 T3324 定时器超时后,模组进入 PSM。模组在针对紧急业务进行连网或进行公共数据网络初始化时,不能申请进入 PSM。当模组工作于PSM 模式时,将关闭大部分连网活动,包括停止搜寻小区消息、小区重选等。但是 T3412 定时器(与周期性 TAU 更新相关)仍然继续工作。定时器超时后,网络

端将不能寻呼模组, 直到下次模组启动驻网程序或 TAU 时, 才能发起寻呼。

模组有两种方式退出 PSM, 一种是 DTE 主动发送上行数据, 模组退出 PSM; 另一种是当T3412 定时器超时后, TAU 启动, 模组退出 PSM。

5.7 串口

模组设有3组串口(通用异步收发器): 主串口,调试下载串口,辅助串口 。模组称作 DCE,并按照传统的 DCE-DTE 方式连接。模组支持固定波特率和自适应波特率两种模式,默认的波特率配置为9600bps,自适应波特率支持范围为: 4800bps[~]115200bps。

主串口: 全功能串口,用于AT命令收发和数据业务

TXD: 发送数据到 DTE 设备的 RXD 端。

RXD: 从 DTE 设备 TXD 端接收数据。

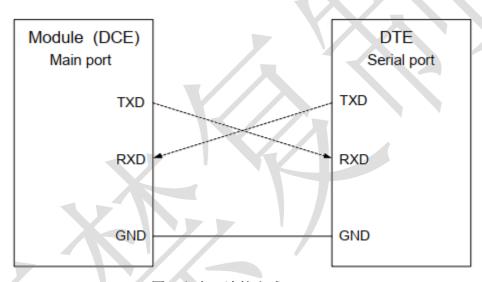


图6 主串口连接方式

主串口特性

- 包括数据线TXD和RXD
- 用于AT命令传送、GPRS数据传输等。串口支持软件多路复用功能。在集成控制模式中支持 NMEA输出和PMTK命令。
- 支持波特率如下: 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200bps。
- 模组默认波特率为9600bps,支持自适应波特率模式。
- 设置固定波特率后,请在设置后的波特率下发送 AT 字符串。
- 模组默认打开波特率自适应功能,在此模式下,当模组接收到主控器或者 PC 发送的 AT 或 at 字符串后,将自动检测并识别出主控制器当前的波特率。
- 波特率自适应功能打开时,建议在 DCE (模组)上电后,等待 2~3s 再发送 AT命令给模组。当模组响应OK,表明 DTE 和 DCE 完成了波特率同步。
- 在自适应波特率模式下,主控器如果需要 URC 信息,必须先进行波特率同步。否则URC 信息将会被省略。

自适应波特率操作配置:

- 1. 串口需配置为 8 位数据位,无奇偶校验位,1 位停止位(出厂配置)。
- 2. 只有字符串 AT 或者 at 可以被检测到。(At 或者 aT 无法被识别)。
- 3. 自适应波特率模式下,如果模组开机后没有进行波特率同步,不会上报URC 信息如 RDY、

+CFUN:1, +CPIN:READY。

- 4. DTE在切换到新的波特率时,会先通过 AT 或者 at 命令设置新波特率。在模组检测并同步新波特率之前,模组会使用之前的波特率发送 URC 信息。因此DTE在切换到新的波特率时,设备有可能会收到无法识别的字符。
- 5. 不推荐在固定波特率模式下切换到自适应波特率模式。
- 6. 在自适应波特率模式下,不推荐切换到软件多路复用模式。

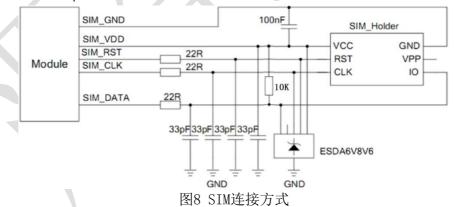

调试串口:用于软件调试和抓LOG TXD_DBG:发送数据到外设 COM 口 RXD_DBG:从外设 COM 口接收数据

图7 DBG串口连接方式

5.8 SIM卡接口

模组支持一组SIM卡接口,用户端SIM_DATA需增加上拉电阻,参考设计如图8所示。模组目前支持1.8V/3.0V SIM卡。

引脚名称	引脚号	描述
SIM_VCC	14	SIM卡供电电源
SIM_CLK	13	SIM卡时钟信号
SIM_DATA	11	SIM卡数据 收发
SIM_RST	12	SIM 复位信号
SIM_GND	10	SIM卡地信号

表7 SIM卡接口

6 无铅回流焊工艺参数要求

模组的SMT建议使用无铅回流焊工艺,对应的炉温曲线如下图所示:

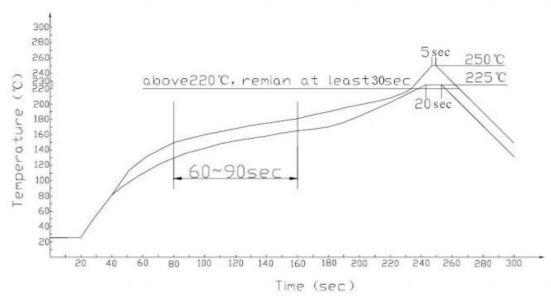


图9 炉温曲线

无铅回流焊工艺温度参数区间划分如下表所示:

区域	时间	升温速率	峰值温度	降温速率
预热区(40~150℃)	60~150s	≤2.0°C/s	-	_
均温区(150~200℃)	60~120s	<1.0℃/s	/-	-
回流区(>217℃)	60~90s	/-	230−260℃	-
冷却区 (Tmax~180℃)	-/	-	-	1.0°C/s≪Slope≪4.0°C/s

表8 温度参数

补充说明:

- 预热区:温度由40°C \sim 150°C,温度上升速率控制在2°C/s左右,该温区时间控制 在60 \sim 150s。
- 均温区:温度由150℃~200℃,稳定缓慢升温,温度上升速率小于1℃/s,且该区域时间控制在60~120s(注意:该区域一定缓慢受热,否则易导致焊接不良)。
- 回流区: 温度由217℃~Tmax~217℃,整个区间时间控制在60~90s。
- 冷却区:温度由Tmax~180℃,温度下降速率最大不能超过4℃/s。
- 温度从室温25℃升温到250℃时间不应该超过6分钟。
- 该回流焊曲线仅为推荐值,客户端需根据实际生产情况做相应调整。
- 回流时间以60~90s为目标,对于一些热容较大无法满足时间要求的单板 可将回流时间放宽至120s。

封装体耐温标准参考IPC/JEDEC J-STD-020D标准, 封装体测温方法参考JEP 140标准。IPC/JEDEC J-STD-020D 标准, 封装体测温方法按照 JEP 140 标准要求。

JEP140 推荐:对于厚度较小的器件,测量封装体温度时,直接将热电偶贴放在器件表面,对于厚度较大的器件,在器件表面钻孔埋入热电偶进行测量。由于量化器件厚度的要求,推荐全部采用在封装体表面钻孔埋入热电偶的方式(特别薄器件,无法钻孔除外)。

7 包装和运输

7.1 包装尺寸

模组使用托盘包装。

图4 包装介绍

7.2 防静电要求

模组为静电敏感产品。模组上的射频电路包含静电敏感器件,焊接、安装和运输过程中请注意静电防护,请不要用裸手直接碰触RF_IN及其他引脚,否则可能会导致模组损坏。

8 售后服务

8.1 保修服务

产品自发货日起12个月内,在用户遵守说明书规定要求的情况下,若有质量问题,我公司负责提供售后服务。